98 research outputs found

    Second Quantization of the Wilson Loop

    Get PDF
    Treating the QCD Wilson loop as amplitude for the propagation of the first quantized particle we develop the second quantization of the same propagation. The operator of the particle position X^ÎŒ\hat{\cal X}_{\mu} (the endpoint of the "open string") is introduced as a limit of the large NN Hermitean matrix. We then derive the set of equations for the expectation values of the vertex operators \VEV{ V(k_1)\dots V(k_n)} . The remarkable property of these equations is that they can be expanded at small momenta (less than the QCD mass scale), and solved for expansion coefficients. This provides the relations for multiple commutators of position operator, which can be used to construct this operator. We employ the noncommutative probability theory and find the expansion of the operator X^ÎŒ\hat{\cal X}_\mu in terms of products of creation operators aΌ† a_\mu^{\dagger}. In general, there are some free parameters left in this expansion. In two dimensions we fix parameters uniquely from the symplectic invariance. The Fock space of our theory is much smaller than that of perturbative QCD, where the creation and annihilation operators were labelled by continuous momenta. In our case this is a space generated by d=4d = 4 creation operators. The corresponding states are given by all sentences made of the four letter words. We discuss the implication of this construction for the mass spectra of mesons and glueballs.Comment: 41 pages, latex, 3 figures and 3 Mathematica files uuencode

    Induced QCD at Large N

    Full text link
    We propose and study at large N a new lattice gauge model , in which the Yang-Mills interaction is induced by the heavy scalar field in adjoint representation. At any dimension of space and any N N the gauge fields can be integrated out yielding an effective field theory for the gauge invariant scalar field, corresponding to eigenvalues of the initial matrix field. This field develops the vacuum average, the fluctuations of which describe the elementary excitations of our gauge theory. At N=∞N= \infty we find two phases of the model, with asymptotic freedom corresponding to the strong coupling phase (if there are no phase transitions at some critical NN). We could not solve the model in this phase, but in the weak coupling phase we have derived exact nonlinear integral equations for the vacuum average and for the scalar excitation spectrum. Presumably the strong coupling equations can be derived by the same method.Comment: 20 page

    Wilson line correlators in two-dimensional noncommutative Yang-Mills theory

    Get PDF
    We study the correlator of two parallel Wilson lines in two-dimensional noncommutative Yang-Mills theory, following two different approaches. We first consider a perturbative expansion in the large-N limit and resum all planar diagrams. The second approach is non-perturbative: we exploit the Morita equivalence, mapping the two open lines on the noncommutative torus (which eventually gets decompacted) in two closed Wilson loops winding around the dual commutative torus. Planarity allows us to single out a suitable region of the variables involved, where a saddle-point approximation of the general Morita expression for the correlator can be performed. In this region the correlator nicely compares with the perturbative result, exhibiting an exponential increase with respect to the momentum p.Comment: 21 pages, 1 figure, typeset in JHEP style; some formulas corrected in Sect.3, one reference added, results unchange

    Notes on the Hamiltonian formulation of 3D Yang-Mills theory

    Full text link
    Three-dimensional Yang-Mills theory is investigated in the Hamiltonian formalism based on the Karabali-Nair variable. A new algorithm is developed to obtain the renormalized Hamiltonian by identifying local counterterms in Lagrangian with the use of fictitious holomorphic symmetry existing in the framework with the KN variable. Our algorithm is totally algebraic and enables one to calculate the ground state wave functional recursively in gauge potentials. In particular, the Gaussian part thus calculated is shown to coincide with that obtained by Leigh et al. Higher-order corrections to the Gaussian part are also discussed.Comment: 26 pages, LaTeX; discussions on IR regulators and local counterterms improved, references adde

    A non trivial extension of the two-dimensional Ising model: the d-dimensional "molecular" model

    Full text link
    A recently proposed molecular model is discussed as a non-trivial extension of the Ising model. For d=2 the two models are shown to be equivalent, while for d>2 the molecular model describes a peculiar second order transition from an isotropic high temperature phase to a low-dimensional anisotropic low temperature state. The general mean field analysis is compared with the results achieved by a variational Migdal-Kadanoff real space renormalization group method and by standard Monte Carlo sampling for d=3. By finite size scaling the critical exponent has been found to be 0.44\pm 0.02 thus establishing that the molecular model does not belong to the universality class of the Ising model for d>2.Comment: 25 pages, 5 figure

    Critical Behavior of Dynamically Triangulated Quantum Gravity in Four Dimensions

    Full text link
    We performed detailed study of the phase transition region in Four Dimensional Simplicial Quantum Gravity, using the dynamical triangulation approach. The phase transition between the Gravity and Antigravity phases turned out to be asymmetrical, so that we observed the scaling laws only when the Newton constant approached the critical value from perturbative side. The curvature susceptibility diverges with the scaling index −.6-.6. The physical (i.e. measured with heavy particle propagation) Hausdorff dimension of the manifolds, which is 2.3 in the Gravity phase and 4.6 in the Antigravity phase, turned out to be 4 at the critical point, within the measurement accuracy. These facts indicate the existence of the continuum limit in Four Dimensional Euclidean Quantum Gravity.Comment: 12pg

    Spontaneous P-violation in QCD in extreme conditions

    Full text link
    We investigate the possibility of parity being spontaneously violated in QCD at finite baryon density and temperature. The analysis is done for an idealized homogeneous and infinite nuclear matter where the influence of density can be examined with the help of constant chemical potential. QCD is approximated by a generalized sigma-model with two isomultiplets of scalars and pseudoscalars. The interaction with the chemical potential is introduced via the coupling to constituent quark fields as nucleons are not considered as point-like degrees of freedom in our approach. This mechanism of parity violation is based on interplay between lightest and heavier degrees of freedom and it cannot be understood in simple models retaining the pion and nucleon sectors solely. We argue that, in the appropriate environment (dense and hot nuclear matter of a few normal densities and moderate temperatures), parity violation may be the rule rather than the exception and its occurrence is well compatible with the existence of stable bound state of normal nuclear matter. We prove that the so called 'chiral collapse' never takes place for the parameter region supporting spontaneous parity violation.Comment: 9 page

    Cluster Analysis of Extremely High Energy Cosmic Rays in the Northern Sky

    Full text link
    The arrival directions of extremely high energy cosmic rays (EHECR) above 4×10194\times10^{19} eV, observed by four surface array experiments in the northern hemisphere,are examined for coincidences from similar directions in the sky. The total number of cosmic rays is 92.A significant number of double coincidences (doublet) and triple coincidences (triplet) are observed on the supergalactic plane within the experimental angular resolution. The chance probability of such multiplets from a uniform distribution is less than 1 % if we consider a restricted region within ±10∘\pm 10^{\circ} of the supergalactic plane. Though there is still a possibility of chance coincidence, the present results on small angle clustering along the supergalactic plane may be important in interpreting EHECR enigma. An independent set of data is required to check our claims.Comment: 9 pages, 6 tables, 8 figures. submitted to Astroparticle Physic

    Two dimensional lattice gauge theory based on a quantum group

    Full text link
    In this article we analyze a two dimensional lattice gauge theory based on a quantum group.The algebra generated by gauge fields is the lattice algebra introduced recently by A.Yu.Alekseev,H.Grosse and V.Schomerus we define and study wilson loops and compute explicitely the partition function on any Riemann surface. This theory appears to be related to Chern-Simons Theory.Comment: 35 pages LaTex file,CPTH A302-05.94 (we have corrected some misprints and added more material to be complete

    String Propagator: a Loop Space Representation

    Get PDF
    The string quantum kernel is normally written as a functional sum over the string coordinates and the world--sheet metrics. As an alternative to this quantum field--inspired approach, we study the closed bosonic string propagation amplitude in the functional space of loop configurations. This functional theory is based entirely on the Jacobi variational formulation of quantum mechanics, {\it without the use of a lattice approximation}. The corresponding Feynman path integral is weighed by a string action which is a {\it reparametrization invariant} version of the Schild action. We show that this path integral formulation is equivalent to a functional ``Schrodinger'' equation defined in loop--space. Finally, for a free string, we show that the path integral and the functional wave equation are {\it exactly } solvable.Comment: 15 pages, no figures, ReVTeX 3.
    • 

    corecore